Isoform Selectivity of Adenylyl Cyclase Inhibitors: Characterization of Known and Novel Compounds s

نویسندگان

  • Cameron S. Brand
  • Harrison J. Hocker
  • Alemayehu A. Gorfe
  • Claudio N. Cavasotto
  • Carmen W. Dessauer
چکیده

Nine membrane-bound adenylyl cyclase (AC) isoforms catalyze the production of the second messenger cyclic AMP (cAMP) in response to various stimuli. Reduction of AC activity has well documented benefits, including benefits for heart disease and pain. These roles have inspired development of isoform-selective AC inhibitors, a lack of which currently limits exploration of functions and/or treatment of dysfunctions involving AC/cAMP signaling. However, inhibitors described as AC5or AC1-selective have not been screened against the full panel of AC isoforms. We have measured pharmacological inhibitor profiles for all transmembrane AC isoforms. We found that 9-(tetrahydro-2-furanyl)9H-purin-6-amine (SQ22,536), 2-amino-7-(furanyl)-7,8-dihydro-5 (6H)-quinazolinone (NKY80), and adenine 9-b-D-arabinofuranoside (Ara-A), described as supposedly AC5-selective, do not discriminate between AC5 and AC6, whereas the putative AC1selective inhibitor 5-[[2-(6-amino-9H-purin-9-yl)ethyl]amino]-1pentanol (NB001) does not directly target AC1 to reduce cAMP levels. A structure-based virtual screen targeting the ATP binding site of AC was used to identify novel chemical structures that show some preference for AC1 or AC2. Mutation of the AC2 forskolin binding pocket does not interfere with inhibition by SQ22,536 or the novel AC2 inhibitor, suggesting binding to the catalytic site. Thus, we show that compounds lacking the adenine chemical signature and targeting the ATP binding site can potentially be used to develop AC isoform– specific inhibitors, and discuss the need to reinterpret literature using AC5/6-selective molecules SQ22,536, NKY80, and Ara-A.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoform selectivity of adenylyl cyclase inhibitors: characterization of known and novel compounds.

Nine membrane-bound adenylyl cyclase (AC) isoforms catalyze the production of the second messenger cyclic AMP (cAMP) in response to various stimuli. Reduction of AC activity has well documented benefits, including benefits for heart disease and pain. These roles have inspired development of isoform-selective AC inhibitors, a lack of which currently limits exploration of functions and/or treatme...

متن کامل

Similarly Potent Inhibition of Adenylyl Cyclase by P-Site Inhibitors in Hearts from Wild Type and AC5 Knockout Mice

Adenylyl cyclase type 5 (AC5) was described as major cardiac AC isoform. The knockout of AC5 (AC5KO) exerted cardioprotective effects in heart failure. Our study explored the impact of AC5KO on mouse heart AC activities and evaluated putative AC5-selective inhibitors. In cardiac membranes from AC5KO mice, basal AC activity was decreased, while AC stimulation was intact. The putative AC5-selecti...

متن کامل

Synthesis and Biological Study of Adenylyl Cyclase Inhibitors

Adenylyl cyclase (AC) is a critical family of enzymes which modulates the dynamic cellular level of cAMP, cyclic adenosine monophosphate. The study of cAMP showed that it is indispensable for the signal transduction cascades during many physiological processes, such as immune responses and metabolism which highly relate to cancers. Previous studies of AC inhibitors have been limited due to a la...

متن کامل

Development of a High-Throughput Screening Paradigm for the Discovery of Small-Molecule Modulators of Adenylyl Cyclase: Identification of an Adenylyl Cyclase 2 Inhibitor s

Adenylyl cyclase (AC) isoforms are implicated in several physiologic processes and disease states, but advancements in the therapeutic targeting of AC isoforms have been limited by the lack of potent and isoform-selective small-molecule modulators. The discovery of AC isoform-selective small molecules is expected to facilitate the validation of AC isoforms as therapeutic targets and augment the...

متن کامل

Development of a high-throughput screening paradigm for the discovery of small-molecule modulators of adenylyl cyclase: identification of an adenylyl cyclase 2 inhibitor.

Adenylyl cyclase (AC) isoforms are implicated in several physiologic processes and disease states, but advancements in the therapeutic targeting of AC isoforms have been limited by the lack of potent and isoform-selective small-molecule modulators. The discovery of AC isoform-selective small molecules is expected to facilitate the validation of AC isoforms as therapeutic targets and augment the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013